Zarraning elektromagnit massasi

testwikidan olingan
Navigatsiya qismiga oʻtish Qidirish qismiga oʻtish

Klassik mexanikada m massali, v tezlikli zarraning impulsi mv va kinetik energiyasi 12mv2 boʻladi. Shularga asosan,

G=v(43Wec2);     (1)

va

Wm=12(43Wec2)v2;     (2)

ifodalarda ishtirok etuvchi qavs ichidagi kattalikni elektromagnit maydon yaratuvchi zarraning elektromagnit massasi deb yuritiladi. Taʼrifga asosan, demak, zarraning elektromagnit massasi

M=43Wec2;     (3)

boʻladi. Shunday qilib, elektromagnit massa maydoniy xarakterga ega. (2) ga muvofiq elektromagnit massaga ega zarraning kinetik energiyasi shu zarraning magnit maydon energiyasiga tengdir.

Nuqtaviy zaryad turgan joyda, yaʼni R=0 boʻlganda,

E(r,t)=e(rvt)|rvt|;     (4)

formulaga asosan, maydon kuchlanganligi cheksiz katta, demak, maydon energiyasi ham cheksiz katta va (3) ga asosan, elektromagnit massa ham cheksiz katta. Haqiqatda zaryad nuqtaviy emas, u qanday boʻlmasin biror hajmga ega.

Umuman aytganda, zaryadning fazoviy oʻlchamlariga, shakliga va taqsimotiga qarab, uning maydon energiyasi, demak, elektromagnit massasi aniqlanadi.

Masalan, zaryad a radiusli sferik sirt boʻyicha tekis taqsimlangan boʻlsin. U vaqtda sferik sirtdan tashqaridagi fazodagina maydon mavjuddir. (4) formula hamda

We=E28πdV

ifodaga asosan,

We=18πe2R4dV

Maydonning sferik simmetriyasiga asosan, hajm elementi dV=4πR2dR.

Demak,

We=e22adRR2=e22(1R)
We=e22a;     (5)

U vaqtda (3) ga asosan,

M=23e2c2a;     (6)

boʻladi. Agar zaryad taqsimoti biz faraz qilgan sferik simmetriyadan farq qilsa, yuqoridagi formulada 2/3 oʻrnida albatta, boshqa koeffitsient ishtirok etardi. Shuning uchun quyidagicha yozish mumkin:

Me2c2a

bu yerdan

ae2Mc2;     (7)

Elektron massasi faqatgina elektromagnit xarakterli hisoblansa, (7) ga asosan aniqlangan a kattalik elektronning klassik radiusi nomi bilan yuritiladi. Maʼlumki, e=4,81010 СГСЕ, c=31010<math>sm/s,<math>M=9,11028 gr. Shunday qilib, elektronning klassik radiusi

a2,81013sm;     (8)

Zarraning elektromagnit massasi maydoniy massa ekanligini koʻrdik. Bu yerda, shunisi diqqatga sazovorki, zarralardan holi, yaʼni vakuumdagi elektromagnit maydonning massasi bilan energiyasi ham oʻzaro proporsional ekanligini avvaldan bilamiz. Ammo zarraning elektromagnit massasi va energiyasi orasidagi bogʻliqlikni ifodalovchi (3) formulada esa qoʻshimcha koeffitsient 4/3 mavjud. Buning boisi shundaki, zarraning elektromagnit massasi tushunchasini yaratishda biz elektromagnit maydonnigina hisobga oldik.

Ammo zaryadning, masalan elektronning real mavjudligi uning bir butun va turgʻun mustahkamligi uchun elektromagnit maydonninggina taʼsiri yetarli emas. Bu maydon taʼsirida zarraning ayrim qismlari bir-birini itarib, oʻzaro uzoqlashadi va cheksizlikka intiladi, bu esa elektronning yemirilishi demakdir. Vaholanki, elektronning mavjudligi, bir butun va mustahkamligi shubhasiz real faktdir.

Shunday qilib, elektromagnit maydon bilan bir qatorda boshqa turlicha fizik maydonlarning mavjudligini tan olishga majburmiz. Bu esa hozirgi zamon fizik maydonlar nazariyasi tomonidan yechilishi kerak boʻlgan muhim masalalardan biridir.

Manba

R.X.Mallin, Klassik elektrodinamika, Oʻqituvchi, T., 1974

Qoʻshimcha oʻqish uchun

Andoza:Turkumsiz